Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Clin Invest ; 132(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2053516

RESUMEN

BACKGROUNDPatients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the effect of such therapies on vaccine-induced T cell responses.METHODSWe longitudinally characterized humoral and spike-specific T cell responses in patients with inflammatory bowel disease (IBD), who were on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors, and/or other biologic treatment (anti-integrin or anti-p40) for up to 6 months after completing 2-dose COVID-19 mRNA vaccination.RESULTSWe demonstrate that a spike-specific T cell response was not only induced in treated patients with IBD at levels similar to those of healthy individuals, but also sustained at higher magnitude for up to 6 months after vaccination, particularly in those treated with TNF inhibitor therapy. Furthermore, the spike-specific T cell response in these patients was mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile.CONCLUSIONDespite the humoral response defects, patients under immune-modifying therapies demonstrated a favorable profile of vaccine-induced T cell responses that might still provide a layer of COVID-19 protection.FUNDINGThis study was funded by the National Centre for Infectious Diseases (NCID) Catalyst Grant (FY2021ES) and the National Research Fund Competitive Research Programme (NRF-CRP25-2020-0003).


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Vacunas Virales , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Enfermedades Inflamatorias del Intestino/terapia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Vacunación , Vacunas Virales/genética
2.
J Clin Invest ; 131(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1463086

RESUMEN

Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19 , Inmunidad Celular/efectos de los fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Adulto , Vacuna BNT162 , COVID-19/sangre , COVID-19/inmunología , COVID-19/prevención & control , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Cell Mol Immunol ; 18(10): 2307-2312, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1392819

RESUMEN

During viral infections, antibodies and T cells act together to prevent pathogen spread and remove virus-infected cells. Virus-specific adaptive immunity can, however, also trigger pathological processes characterized by localized or systemic inflammatory events. The protective and/or pathological role of virus-specific T cells in SARS-CoV-2 infection has been the focus of many studies in COVID-19 patients and in vaccinated individuals. Here, we review the works that have elucidated the function of SARS-CoV-2-specific T cells in patients and in vaccinated individuals. Understanding whether SARS-CoV-2-specific T cells are more linked to protection or pathogenesis is pivotal to define future therapeutic and prophylactic strategies to manage the current pandemic.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/fisiología , Linfocitos T/inmunología , COVID-19/metabolismo , COVID-19/prevención & control , COVID-19/virología , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Front Immunol ; 12: 674279, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1266662

RESUMEN

An accurate depiction of the convalescent COVID-19 immunome will help delineate the immunological milieu crucial for disease resolution and protection. Using mass cytometry, we characterized the immune architecture in patients recovering from mild COVID-19. We identified a virus-specific immune rheostat composed of an effector T (Teff) cell recall response that is balanced by the enrichment of a highly specialized regulatory T (Treg) cell subset. Both components were reactive against a peptide pool covering the receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. We also observed expansion of IFNγ+ memory CD4+ T cells and virus-specific follicular helper T (TFH) cells. Overall, these findings pinpoint critical immune effector and regulatory mechanisms essential for a potent, yet harmless resolution of COVID-19 infection.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Linfocitos T CD4-Positivos/inmunología , Niño , Preescolar , Femenino , Humanos , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Células T Auxiliares Foliculares/inmunología , Linfocitos T Reguladores/inmunología , Adulto Joven
5.
Med (N Y) ; 2(6): 682-688.e4, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1174423

RESUMEN

BACKGROUND: RNA vaccines against coronavirus disease 2019 (COVID-19) have demonstrated ∼95% efficacy in phase III clinical trials. Although complete vaccination consisted of 2 doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against COVID-19. METHODS: Serological and T cell analysis was performed in a cohort of 20 healthcare workers after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. The primary endpoint was the adaptive immune responses detectable at days 7 and 10 after dosing. FINDINGS: Spike-specific T cells and binding antibodies were detectable 10 days after the first dose of the vaccine, in contrast to receptor-blocking and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) neutralizing antibodies, which were mostly undetectable at this early time point. CONCLUSIONS: Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against COVID-19. FUNDING: The study was funded by a generous donation from The Hour Glass to support COVID-19 research.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , Inmunoglobulina G , ARN , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA